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Abstract The M9 Cascadia subduction zone earthquake represents one of the most

pressing natural hazard threats in the Pacific Northwest of the USA with an astonishing

high 7–12% chance of occurrence by 2060, mirroring the 2011 devastating earthquake and

tsunami in Japan. Yet this region, like many other coastal communities, is underprepared,

lacking a comprehensive understanding of unplanned network disruptions as a key com-

ponent to disaster management planning and infrastructure resilience. The goals of this

paper are twofold: (1) to conduct a network vulnerability assessment to systematically

characterize the importance of each link’s contribution to the overall network resilience,

with specific emphasis on identifying the most critical set of links and (2) to create an

evidence-driven retrofitting resource allocation framework by quantifying the impacts of

unplanned network disruptions to the critical links on network resilience and retrofitting

planning. This research used the city of Seaside on the Oregon coast as a study site to

create the agent-based tsunami evacuation modeling and simulation platform with an

explicit focus on the transportation network. The results indicated that (1) the network

bridges are not equally important and some of the critical links are counterintuitive and (2)

the diverse ways of spending the limited retrofitting resources can generate dramatically

different life safety outcomes. These results strongly suggest that accurate characterization
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and measurement of infrastructure network failures will provide evidence-driven retro-

fitting planning strategies and inform resource allocations that enhance network resilience.

Keywords Unplanned network disruption � Agent-based tsunami evacuation

modeling � Evidence-driven resource allocation � Retrofitting planning � Community

resilience

1 Introduction

Natural disasters could result in unnecessary loss of life and disproportionate suffering to

families and communities if the essential infrastructure systems are not resilient. The

Pacific Northwest region is highly prone to a M9 CSZ earthquake (Goldfinger et al. 2012)

and near-field tsunami (20–40 min of lead time) mirroring the devastating 2011 Tohoku

event in Japan. Yet this region is grossly underprepared for the ‘‘Big One’’ (Schulz

2015a, b), lacking the developed disaster management plans and critical infrastructure it

needs to be resilient. Transportation networks are one of the most critical components of

the civil infrastructure system susceptible to natural disasters (Murray-Tuite 2007). The

performance of a transportation network is essential to emergency responses and recovery

activities following an immediate earthquake. Depending on the magnitude and duration of

an earthquake, the transportation network typically suffers from certain levels of mobility

losses (e.g., bridge failures and road blockage) caused by either ground shaking, or sec-

ondary hazards such as landslides or rockfalls triggered by the initial shake. Bridges in

transportation networks, specifically, are ‘‘critical’’ and vital to normal and emergency

operations. However, they are continuously deteriorating over time and are particularly

vulnerable to seismic hazards (Chang et al. 2012). It is critical that bridges retain their

traffic-carrying capacities after a devastating earthquake so that people can efficiently

evacuate to safer areas. Retrofitting existing bridges is a widely accepted and relatively

economical way to enhance bridges’ performance against earthquakes and mitigate their

functional loss (Chang et al. 2012). Nevertheless, it is neither practical nor economical to

retrofit all existing bridges due to budget constraints. In addition, the amount and level of

retrofitting are of great significance. Therefore, it is vital to prioritize the bridges’ retro-

fitting with an appropriate strategy. Besides bridges, maintenance of some of the trans-

portation links is also of significance. The criticality of any specific link or bridge is

reinforced by the lack of alternative links in an evacuation scenario. Since life safety is the

most important measure to evaluate the success of a near-field tsunami evacuation,

exploring the effect of network disruption through evacuation mortality would provide an

innovative and straightforward perspective to prioritize a retrofitting strategy in a way to

minimize the mortality rate considering limited resources.

1.1 Motivation and contribution

The major contributions of this research are (1) an agent-based modeling framework to

systematically characterize each transportation link’s contribution to the overall life safety

and network resilience measured by their contribution to the mortality rate and (2) an

evidence-driven retrofitting framework to prioritize resource allocations for maximum life

safety benefits. This research integrates the unplanned transportation network disruption
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uncertainties into a multimodal agent-based evacuation model to assess the impacts of

disruptions considering an agent’s choice of evacuation modes (i.e., driving, walking on

foot) and their life safety from a network-wide perspective. An innovative agent-based

modeling framework is used to identify and classify the criticality of network links, based

on their failure impact on the mortality rate of the evacuation, and further, the framework is

used to devise the optimal retrofitting plan for the critical links of the network. Research

results will enlighten policy makers, city planners, and government officials on how link

disruptions (i.e., bridge failures) can affect the evacuees’ rerouting decision-making

behavior. Ultimately, the efficiency of the evacuation process is analyzed in order to devise

a logical retrofitting plan for critical links of the transportation network and rationally

allocate the limited retrofitting resources. Using the city of Seaside as a case study, an

optimal retrofitting plan is created to prioritize the limited resources to minimize the

fatality rate.

1.2 Paper organization

This paper is organized as follows: Sect. 2 presents a brief literature review on planned and

unplanned network disruptions. Section 3 details the different critical components of the

agent-based modeling and simulation framework. A description of the case study site is

provided in Sect. 3.1. Section 4 presents a detailed experiment design and analysis of

results. Finally, Sect. 5 summarizes the research and discusses the major findings from this

study.

2 Literature review

Most of the existing network disruption (Sullivan et al. 2009) research focuses on traffic

flow pattern change (He and Liu 2012; Xie and Levinson 2011), congestion-induced

capacity reduction (Sullivan et al. 2010), economic loss estimation (Tatano and Tsuchiya

2008), and rerouting behavior (Qian and Zhang 2013) as a result of the planned disrup-

tion (Konduri et al. 2013; Zhu and Levinson 2012). Less work has been done on the

impacts of unplanned disruptions to network-wide resilience (Jenelius et al. 2010). Despite

methodological advancements, challenges remain in measuring and quantifying the

impacts of network disruptions from a network science perspective by characterizing each

link’s contribution to the overall network resilience (Scott et al. 2006). The lack of a

systematic characterization of network resilience hinders understanding how limited ret-

rofitting resources should be allocated to generate maximum mobility and safety benefits

for post-disaster response and recovery. This methodological shortcoming is linked with

the shortage of empirical data on network failure modes or partial failure/function for a

collection of nodes or links in the network ( Fessel et al. 2014).

2.1 Planned and unplanned network disruptions

Network disruptions refer to a series of events that change the regular flow of traffic on one

or more roadway facilities. Generally, network disruptions are classified as planned and

unplanned events. Planned disruptions include traffic congestion or road or ramp closures

to accommodate work zones along a freeway segment or bridge section, or to accom-

modate transit strikes, etc. (Konduri et al. 2013; Zhu and Levinson 2012). Unplanned
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disruptions include natural disasters (e.g., tsunamis, earthquakes, floods, landslides, hur-

ricanes), terrorist attacks (e.g., September 11, 2001), infrastructure failures (e.g., I-35W

bridge collapse in 2007), severe accidents, etc. (Zhu and Levinson 2012; Jenelius et al.

2010). Network disruptions lead to a drop in capacity on the roadway segment where the

incident occurs and result in delays, built-up queues, and spill-backs on to surrounding

areas in the network (Konduri et al. 2013). A partial decrease or complete loss of capacity

on a road or bridge link can result in travel time increase and changes in travel behavior

through congestion and queues. Empirical evidence shows that a majority of unplanned

transport network disruptions are followed by ‘‘a time-on the order of days or weeks-of

uncertainty, learning and adaptation for the travelers’’ (Jenelius et al. 2010). If the network

disruption lasts for a long time, the traffic eventually reaches a new equilibrium, where

travelers collect sufficient information and change their travel behaviors accordingly. In

such cases, unplanned disruptions have similar impacts to traffic as planned disruptions, as

people are more informed and have time to change travel decisions; most common are

changes to departure time and route choice (Jenelius et al. 2010). However, the immediacy

of an evacuation would leave no room for adaptation. Various approaches have been

proposed to model the network disruptions, including static analysis (Earnest 2011),

equilibrium analysis (Miller et al. 1999), weighted network model (Earnest 2011), dis-

ruption index (Murray-Tuite and Mahmassani 2005; Rahimian and Mcneil 2012), agent-

based models (Earnest 2011), damage index (Rahimian and Mcneil 2012), probability

model (Chang et al. 2012), and travel time analysis (Bocchini and Frangopol 2010).

2.2 Measures of network disruptions

When it comes to emergency response or disaster evacuation, a system performance metric

is required to assess the serviceability of a road network and compare the effectiveness

resulting from different intervention or mitigation projects. Such system metrics for road

networks can be divided into three categories: (1) connectivity, (2) travel delay cost, and

(3) network flow capacity (Chang et al. 2012). Connectivity relies highly on the con-

nectedness of a transportation network. However, it ignores traffic systems’ capacities,

travel time, and trip length. Travel delay cost has been widely adopted to assess the seismic

risk of transportation systems (Kiremidjian et al. 2007). Nevertheless, it is heavily

dependent on origin–destination (OD) demand matrices. Network flow capacity metric

falls in between: it evaluates the serviceability of transportation networks under specifi-

cally determined seismic damage and does not require detailed OD demand information or

traveler behavior to compute the travel delay cost. It serves better to evaluate the emer-

gency serviceability of a transportation network in terms of immediate population evac-

uation. Berdica (2002) defined the vulnerability as ‘‘a susceptibility to incidents that can

result in considerable reductions in road network serviceability.’’ The serviceability of a

link is defined as ‘‘the possibility to use that link during a given time period.’’ However,

previous research did not examine the availability of alternative links for a specific link in

the transportation network. In addition, Jenelius et al. (2006) defined two concepts of

criticality and exposure for elements in the network in case of a hazard. The proposed

concepts are purely based on the characteristics of the network and not the type and

dynamics of the hazard. Therefore, the criticality calculated for any element might not

properly reflect the importance of that element’s failure.

Moreover, it is vital to know the details of the impacts of the system disruption, for

example where events are most likely to happen, and where impacts would be the most

severe (Jenelius and Mattsson 2012). The desire to better understand the impacts of
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network disruptions has led to a rich body of research. This literature can be classified into

two categories: (1) measuring the change of activity–travel behavior in response to net-

work perturbation and user information provision and (2) tool development for simulating

network disruptions and evaluating various policies and solutions to alleviate the impacts

of network disruptions (Konduri et al. 2013). Zhu et al. (2010) investigated the impact of

the collapse of the I-35W bridge over the Mississippi River on regional traffic flow and

travel behavior patterns. Akiyama et al. (2012) proposed a probability assessment of

bridge performance by estimating bridge failure likelihood through bridge fragility curves.

As Murray-Tuite (2007) stated, ‘‘before planning network improvement, they should

examine the degree to which the disruption of a link, or set of links, will influence network

connectivity.’’ Network connectivity plays a significant part in the performance of the

network, especially during an evacuation. However, the connectivity of a network does not

necessarily represent the proficiency of the network in an evacuation situation. A trans-

portation network has hundreds of thousand links, and the impact of their failure to the

evacuation varies. Identifying which link is critical to the evacuation performance is

challenging but meaningful. Existing studies select the critical links based on a travel

performance measurement, such as travel time, travel delay, capacity. However, during an

evacuation, life safety is of the most concern. Therefore, in this research, the critical link is

determined by studying the mortality rate before and after the link failure.

3 Methodology: agent-based tsunami evacuation modeling (ABTEM)
framework

The agent-based modeling and simulation framework is coded in NetLogo to evaluate the

near-field tsunami evacuation under transportation network disruptions (Wang et al. 2016).

NetLogo is a high-level integrated modeling platform through an agent-based program-

ming language (Wilensky 1999). This modeling framework enables the multi-parameter

exploration for an emergent phenomenon in a multi-agent system and visualizes the

dynamic (time-dependent) scenarios (Railsback et al. 2006). This feature has turned

NetLogo into an increasingly popular tool for research due to its extensive documentation,

user-friendly interface, expandable modeling environment, the existence of good tutorials,

and a large library of preexisting models (Wilensky 1999; Klugl and Bazzan 2012). The

major part of complexity in evacuation modeling is largely driven by interactions between

agents that capture the emergent behavior of the whole system (Pan et al. 2007). Along

with these benefits, the GIS compatibility in NetLogo further validates the use of this

platform for modeling and simulating the evacuation dynamics at a community scale,

ranging from engineering studies to sociology (Wang et al. 2016). Figure 1 shows a

snapshot of the simulation environment coded in NetLogo. As shown in Fig. 1, blue shade

illustrates the tsunami wave, and darker blue represents higher waves. Red dots represent

the evacuees who were caught by the tsunami inundation, and the orange dots represent the

evacuees who are on the way toward the shelters. Yellow circles represent the locations of

primary evacuation shelters, and green represents the evacuees who are safely evacuated to

one of the safe areas.

It is noteworthy that the simulation we developed only focuses on the consequences of

the tsunami hazard, and we do not include direct consequences of the earthquake on the

population or the constructed environment. This is a reasonable assumption since over 90%

of the loss of life in the 2011 Tohoku disaster was attributed to the tsunami inundation, not
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the preceding earthquake. The ABTEM platform can be extended to a multi-hazard model

in future work. For the agent behavior, it is assumed that all agents are autonomous and

heterogeneous and that their choices are directly influenced by their surrounding envi-

ronment and also through interactions. To simplify the problem, it is assumed that agents

do not change their mode choice decisions throughout the evacuation, that is to say, an

agent who starts evacuating by car will not switch to evacuation on foot, and vice versa.

For the sake of network disruption assessment, it is assumed all agents decide to evacuate,

although previous experiences have shown that a small portion of people chose to

stay (Mas et al. 2011, 2012; Mas and Koshimura 2012).

3.1 Study area and multi-hazard scenario

This study uses the city of Seaside on the Oregon coast which is one of the most vulnerable

communities to a combined CSZ earthquake and near-field tsunami (Gonzalez et al. 2009;

Wang et al. 2016; Priest et al. 2016). The city of Seaside has recently been the topic of

several studies regarding tsunami evacuation as well as seismic resiliency and vulnera-

bility, mainly due to its location and its topography which makes it highly prone to a CSZ

tsunami (Wood 2007; Wood and Schmidtlein 2012, 2013; Wood et al. 2016; Priest et al.

2016). This is due, in part, to the proximity to the CSZ, fairly flat topography, and the

location of the tsunami shelter areas at more than 1.5 Km from the shoreline. Two rivers,

Fig. 1 The interface of the agent-based tsunami evacuation model (ABTEM) for city of Seaside, Oregon, in
NetLogo. On the left panel, there are the adjustable variables of the simulation, including the tsunami
severity, evacuation mode split, behavioral and physical aspects of the evacuee community that possibly
affects the mortality rate of the evacuation scenario. The dynamics of the evacuation can be monitored
through simulated graphics in the middle which reflects the movement of cars and pedestrians through the
network, as well as the dynamics of the inundation wave. The darkness of the blue color represents the water
level of the inundated area. Throughout the simulation, dot represents pedestrians and triangles represent
cars. The red dots reflect the geographical distribution of the casualties, while the green dots show the safely
evacuated agents into the designated shelters, shown as yellow circles. Orange dots are evacuees who are
moving toward the safe zones. On the right panel, there are the temporal results of the simulation, including
the number of casualties, number of safely evacuated, based on the evacuation mode
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flowing from south to north, divide the city into three parts. The presence of ten bridges

in total, spanning these two rivers, makes multimodal evacuation more complex and highly

vulnerable and makes Seaside an interesting case study for further analysis on the effects of

a network disruption on the success rate of tsunami evacuation and mortality rates. The

current tsunami evacuation plan for the area calls for horizontal evacuation on foot, and the

option of vertical evacuation has only been discussed in recent years as a possible option.

No comprehensive studies exist which explore the feasibility of vertical evacuation. In

addition to Seaside, there are several other towns along the coast with a high risk of near-

field tsunamis, including Ocean Shores, WA, and Long Beach, WA (Wood and Sch-

midtlein 2013).

The CSZ measures 1000 Km in length and extends from the Mendocino Ridge off the

coast of northern California to northern Vancouver Island, British Columbia (Venturato

et al. 2007; Goldfinger et al. 2012). A near-field event generated from the CSZ is expected

to cause widespread damage to the northwest Pacific coast of North America with the first

waves arriving in the tens of minutes (Park et al. 2012; Wood and Schmidtlein 2013;

Wang et al. 2016). The last great CSZ event occurred more than three centuries ago on

January 26, 1700, and was a full-length rupture (Satake et al. 2003). The event is estimated

to have had a moment magnitude (MW ) between 8.7 and 9.2, and a slip of 19 m (Satake

et al. 2003). The average recurrence interval between full-length CSZ events is 530 years,

and the next event is estimated to have a 7–12% probability of occurrence by

2060 (Goldfinger et al. 2012).

3.2 Model behavior overview

Figure 2 shows an example of the model simulation starting with time t ¼ 0 repre-

senting the end of the initial shaking due to the earthquake to the end of evacuation

scenario. For this simulation, it is assumed that no evacuation takes place during the

earthquake itself. Figure 2a shows the initial population, shown with brown color, which

is distributed normally around the centroid of the beach and downtown area. The agents

have the options to evacuate either on foot or by car. Agents change color and shape

depending on their mode of transportation Fig. 2b, c. Blue color represents the cars, and

orange represents the pedestrians. Figure 2b shows t ¼ 10 after the end of earthquake that

most of the evacuees have started their evacuation. However, there are many agents who

have delayed and they are still in the beach area. Looking at Fig. 2c, d, after approxi-

mately 30–35 min the first waves of tsunami reach the shore. Figure 2e shows the first

fatalities that occur when the inundation level exceed 0.5 m, represented as agents with

red color. It can also be seen that the tsunami has inundated the first part of Seaside after

40 min, crossing the Necanicum River. Finally, the tsunami reaches the runup limit

approximately 1 Km inland, 15 min after reaching the shoreline (Fig. 2f). At the end of

each simulation, the mortality rate of the evacuees can be calculated and be used as a

measurement of effectiveness.

3.3 Monte Carlo simulation

To capture the stochasticity of the simulations, mostly due to the distribution of evacuees

with different decision-making parameters and walking speeds, Monte Carlo simulation

has been implemented in NetLogo and R, bridging the gap using package ‘‘RNetLogo’’1 in

1 https://cran.r-project.org/web/packages/RNetLogo/index.html.
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R. RNetLogo is an open-source package that delivers either a headless interface or a GUI

to use NetLogo in R. It provides the functions to run models, execute commands, and push

or get values from NetLogo directly in R. It allows the modeler to virtually and system-

atically control NetLogo using R code. The package has been thoroughly documented,

providing the opportunity to run simulations, store the results, and analyze using powerful

statistical tools in R (Thiele et al. 2012; Thiele 2014). Our studies show that the average

mortality rate of 10 repetitions is fairly close to 100 repetitions. Figure 3 illustrates

the variation in mortality rate and the mean mortality rate for two different cases with

100% cars and 100% pedestrians. Results indicate that the difference in the mean mortality

rate between 10 and 100 repetitions, for both cases, is less than 0.1%. Therefore, the

assessments have been done using a Monte Carlo simulation mostly with 10 times repe-

tition for computational benefits in this study but the number of repetitions could be set as

100 or 1000 in future endeavors.

3.4 Model components

There are essentially five building blocks of the model: population distribution, road

network, tsunami inundation data, the locations of evacuation shelters, and casualty model,

each of which is explained in detail below.

Fig. 2 Snapshots of ABTEM simulation at varying time from the initial start (a) to the full inundation (e).
a Shows the initial population distribution which is highly concentrated around the beach and downtown
area. b Shows partial initiation of evacuation by the community due to different evacuation milling times.
Blue color represents the vehicles, and orange color is assigned to pedestrians. After 30 min (c), first waves
hit the shoreline, and after 35 min (d), it starts to actually inundate the city. e, f show the movement and
dynamics of tsunami wave and the way it inundates the city considering its topography
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3.4.1 Population distribution model

In the model, the worst-case scenario, noontime of a weekend in the summer, is consid-

ered. Tourists and residents are distributed unevenly based on the attributes of the envi-

ronment (i.e., tourist attractions and residential areas) to the 38 areas shown in Fig. 4a.

Fig. 3 Mortality rate variations for 10 and 100 number of repetitions. Red line represents the median
mortality rate, and the green diamond represents the average mortality rate. a 100% car, b 100% pedestrian

Fig. 4 Population distribution for city of Seaside, Oregon, including residents and tourists. a shows the
arbitrary distribution of the population which reflects the worst-case scenario with high level of population,
40% in this case, along the shoreline. The population on the shoreline is normally distributed around the
centroid of the beach, as shown in (b). Other than this, 30% of the population is distributed normally to the
downtown area. The rest of the population is distributed uniformly to the residential area

Nat Hazards (2017) 88:1347–1372 1355
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These areas are chosen such that the change in land use and other attributes is minimal in

each region. As shown in Fig. 4b, the population is normally distributed around the cen-

troid of the beach and the downtown area. Therefore, the concentration of the evacuees in

those two areas is high. Moreover, although different categories of people (i.e., residents

and tourists) may respond differently to the same hazard, categorization of the evacuees

based on their attributes should be considered for a realistic evacuation simulation plat-

form. For the sake of the main objective of this study it is assumed that different categories

react to the hazard in the same fashion. That is, the agents choose their destination, their

route, their mode of transportation, and immediacy of evacuation regardless of their

knowledge and familiarity with the area.

According to US Census data, the latest population of the city of Seaside is estimated to

be 6445 with 20% under the age of 18.2 The number of tourists in the city considering the

amount of rentals, hotels, and inns can be up to 10,000 on any given day. However, due to

computational challenges in NetLogo coming from agent-agent interactions, 4500 evac-

uees have been included in the simulation runs. For the purpose of network assessment, the

number of agents is valid, as it allows for relative comparison regarding the sensitivity of

the mortality rate to the influential factors. We believe that the relative criticality of the

links remains stable. It is not anticipated that increasing the number of evacuees in the

model will significantly alter the outcomes of critical link identification.

3.4.2 Road network

The road network is imported into the model as a GIS shapefile which was extracted from

OpenStreetMap3 with markings for the area of interest. It is assumed that all the agents

(i.e., residents and visitors) are to follow this network, including the potential crossing of

10 two-lane bridges. For the purpose of network assessment, the possibility of network

disruption in the form of link accessibility, limiting access to (a) neither pedestrians nor

cars and (b) pedestrians only is considered. Conservatively, all network links are consid-

ered as two-way one-lane streets with a speed limit of 55 km/h. This is a reasonable

assumption based on the speed limits (maximum allowable speed) of the area and field

observations of the general standing of the network. Refer to Wang et al. (2016) for the

details of the interactions of agents with the transportation network.

3.4.3 Tsunami shelters

Oregon Department of Geology and Mineral Industries has proposed eight evacuation

shelters outside the inundation zone as shown in Fig. 4b with yellow color (Priest et al.

2013). These are the primary evacuation locations in the model, which are placed outside

the inundation zone. Although recently there have been studies regarding the impact of

vertical evacuation shelter and how they can reduce the number of casualties (Wood et al.

2014; Wang et al. 2016), for the sake of the main objectives of this study, the focus is on

the primary evacuation shelters. All shelters are assumed to have the capacity to fit the

evacuees. In addition, it is assumed that all shelters are structurally sound and can with-

stand tsunami and earthquake forces (FEMA 2008).

2 http://www.cityofseaside.us/.
3 http://www.openstreetmap.org.
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3.4.4 Tsunami inundation

The tsunami inundation dynamics is generated by the ComMIT/MOST model developed

by NOAA calibrated for Cascadia subduction zone (Titov and Gonzalez 1997). Park and

Cox (2016) had proposed a probabilistic model for tsunami inundation that incorporates

uncertainties associated with the event. However, in this study, inundation is modeled as a

definite extreme event with a fixed 2500-year return interval. The inundation model sup-

plies time variation of flow depth and speed for the area of interest. The details of the

inundation model can be found in (Wang et al. 2016).

3.4.5 Casualty model

Although calculating the rate of casualties can be highly complicated due to the variability

of a person’s age, gender, and mental and physical state (Yeh 2010), the casualty model in

the simulations is simplified. Many studies have looked into the hydrodynamics of the

tsunami and its impact on the human body, considering both speed and height of the flow,

using simplified (Lind et al. 2004; Jonkman et al. 2008) as well as detailed models of the

body (Koshimura et al. 2006; Muhari et al. 2011). However, in this paper, for computation

simplification purposes, only wave height was taken into consideration. It has been

assumed that if a wave with a height of Hc or more touches an agent, it will be considered

as a casualty. This assumption might not reflect an accurate mortality rate; however, for

comparison purposes and assessment of the transportation network, this gives us a rea-

sonable estimate of mortality rate. Besides, Hc can reflect the vulnerability of the evacuee

community to the inundation force. For example, in a population with high percentages of

elderly and children the vulnerability is high, and therefore, the Hc can be adjusted to lower

values. The Hc for these simulations has conservatively been set to be 0.5 m. Model

casualties beyond the initial (approximately 1 h) inundation such as hypothermia or heart

attack are not modeled.

3.5 Agent decisions

Decision making in emergency situations is a highly complex process. Although Yin et al.

(2014) had analyzed the process and its impacts on evacuation travel demand for hurricane

evacuation scenario, the characteristics of decision making varies with hazard type. In this

study, it has been assumed that human decisions are limited to the following criteria.

3.5.1 Mode choices

Each agent can make one of the following choices. Option 1 is horizontal evacuation on

foot. Option 2 is horizontal evacuation by car. It also has to be noted that in order to

replicate the worst-case scenario and to expose the transportation network to the highest

level of traffic demand, it has been assumed that there is only one person in each vehicle.

The probability of choosing an option can be specified by the evacuee group proportions.

For example, for a given simulation, the population may have 70% who choose horizontal

evacuation on foot (Opt. 1) and 30% who choose horizontal evacuation by car (Opt. 2).

Refer to Wang et al. (2016) for the details of decision model.
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3.5.2 Milling time

One of the most challenging aspects of modeling natural hazard evacuation, especially for

near-field tsunami evacuations with very low preparation time, is to model evacuation

milling time. Understanding psychological aspects involved in the process of departure

time decision making is complex. It has been shown that milling time has a great impact on

both the formation and evolution of bottlenecks and traffic congestion (Naser and Birst

2010), and mortality rate of the evacuation scenario (Wang et al. 2016). To capture the

evacuation preparation time, as suggested by Mas et al. (2011), departure times follow a

Rayleigh distribution as presented by Wang et al. (2016).

To abstractly consider the decision-making process, values of s and r are reasonably

calibrated and the milling time is randomly drawn from the mentioned distribution with the

following formula (Tweedie et al. 1986; Lindell and Prater 2007).

PðtÞ ¼ 0 0\t\s
1� e�ðt�sÞ2=ð2r2Þ t\s

�
ð1Þ

where t is the departure time in minutes after earthquake. Both s and r can be adjusted in

the platform. s represents the minimum time that an evacuee needs to get prepared, and r
represents the spread of the departure times. The larger the r is, the larger the tail of the

distribution toward later departure times will be. Slight increases in s and r will lead to an

enormous increase in mortality rates (Wang et al. 2016). For the sake of the main objective

and having accurate analysis on the vulnerability of transportation network, and following

the suggestion of government officials regarding the importance of immediate evacuation,

it is assumed s to be 1 min and r to be 0.5, meaning that 99% of agents start their

evacuation between 1 to 2 min and 30 s. Refer to Wang et al. (2016) for more information

regarding the milling time and its impacts on mortality rate.

3.6 Vehicular movement

The movement of vehicles is governed by the classic car-following model (Brackstone and

McDonald 1999), the General Motors model (Chandler et al. 1958; Herman et al. 1959),

with the following equation.

atþdt
nþ1 ¼

al;mðvtnþ1Þ
m

ðxtn � xtnþ1Þ
l

" #
ðvtn � vtnþ1Þ ð2Þ

where xtn is the location of leading vehicle at time t, vtn is the speed of leading vehicle at

time t, xtnþ1 is the location of following vehicle at time t, vtnþ1 is the speed of following

vehicle at time t, vtnþ1 is the speed of following vehicle at time t, l is the distance headway

exponent (varying from -1 to ?4), m is the speed exponent (varying from -2 to ?2), al;m
is the sensitivity coefficient, and dt is the perception-reaction time. The parameters are

adjustable and can be calibrated using empirical data. Despite the lack of empirical data

regarding the driving behavior in emergency situations, the following parameter sets,

shown in Table 1, have been chosen to simulate the vehicular movement.

The perception-reaction time is known to be lower than usual in emergency situations

since the drivers tend to be more alert and responsive if they are aware of the approaching

threat. Therefore, the perception-reaction time in this case, conservatively and in favor of

evacuation by car, is assumed to be fairly close to zero. In addition, parameter a is
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estimated based on the jam density, Kj, of 155 veh/km and free flow speed, Vf , of 55 km/h.

In addition, parameter a linearly correlates with the range of accelerations and decelera-

tions calculated from the car-following model. Therefore, it has to vary in a reasonable and

realistic manner. Simulations have shown that a of 0.14 leads to accelerations in the range

of 1.5–3 m/s2. Decelerations, on the other hand, vary from 3 to 7.5 m/s2. Based on the

literature, this range of accelerations and decelerations represent the empirical data fairly

well, considering the fact that in the case of evacuations, accelerations and decelerations

tend to be higher. Therefore, changes in a are not suggested.

It is worth mentioning that the combination of parameters above, with the assumption of

steady state traffic flow, from a macroscopic point of view, leads to well-known Green-

shields model (Gazis et al. 1961) which represents a linear relationship between speed and

density. Figure 5 shows the speed–density diagram generated by the evacuation simulation

model. The reproduction of this classic speed–density relationship from the ABTEM

simulation further verified the validity of the traffic dynamics. As shown in Fig. 5, speed

decreases when density increases. In addition, the graph is highly concentrated around

higher densities, which shows that the network is in a congested phase.

3.7 Pedestrian movement

The speed of evacuation is another significant variable governing hazards evacua-

tion (Wood and Schmidtlein 2012). Normal walking speed is on average 1.4 m/s. For the

simulation of near-field tsunami evacuation, although people tend to walk faster in

emergency situations, the mean walking speed is conservatively set to be 1.2 m/s (Kno-

blauch et al. 1995). To capture the walking speeds of the elderly, children, and also, fast

walkers, it is assumed that walking speeds follow a normal distribution. Conservatively,

Table 1 Car-following model
parameters

Parameter Notation Value

Distance headway exp l 2

Speed exp m 0

Perception-reaction time dt 0

Sensitivity coef a 0.14

Fig. 5 The speed–density relationship generated from the ABTEM simulation. The simulation results show
the congested state of most of the links on the network, as the points are concentrated toward higher
densities and lower speeds
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the normal distribution’s standard deviation is set to 0.2 m/s, which covers very slow

walking to slow running, ranging from 0.5 to 1.7 m/s (TRB 2010; Wang et al. 2016). Refer

to Wang et al. (2016) for details of the pedestrian movement rules.

4 Experiment design and results

Traditionally, critical link is identified through its contribution to the network travel time.

In an evacuation scenario, however, life safety is the first priority. Building upon the agent-

based tsunami evacuation platform, an innovative critical link identification method is

presented in this section, along with the detailed retrofitting scheme utilized to maximize

the benefits of life safety.

4.1 Critical links identification

In this research, the criticality of a link comes from the impact of the failure of the link on

life safety, and in particular mortality rates. It is, therefore, essential to identify all the

critical links over the investigated transportation network. There are around 700 links

within the transportation network of this case study, including bridges, streets, arterials,

and highway links. The failure of all links, individually, has been assessed, and the links

that had the greatest impact on the mortality rate of evacuation scenario in the trans-

portation network were identified. It is assumed that all the evacuees have prior knowledge

regarding any broken links and reroute to their destination accordingly. To capture the

variation of different decisions as well as walking speeds, each scenario has been simulated

multiple times; the mean mortality of each scenario has been assessed to find critical links

in the network. It is worth mentioning that criticality of a link is correlated with the mode

choice split. In other words, failure of a link can highly impact the efficiency of evacuation

if the evacuees are evacuating on foot, but not in the case where evacuees drive, and vice

versa. To account for different splits of evacuation mode, critical links have been identified

for 5 different combination of mode splits: (1) 100% pedestrians; (2) 75% pedestrians–25%

cars; (3) 50% pedestrians–50% cars; (4) 25% pedestrians–75% cars; and (5) 100% cars.

4.1.1 Critical link selection criteria

Figure 6 shows the normalized increase in mortality rates of a scenario where a specific

link is failed, over the average mortality rate of all links failures, for different evacuation

mode splits. For example, looking at Fig. 6a, there are 10 links that their failure increases

the mean mortality rate by at least 5%. Interestingly, there are a few links that are critical in

cases where the majority of evacuees are pedestrians, but not in cases where the percentage

of vehicles is high. Analogously, there are a few links that are considered as critical only

when the percentage of cars is high. There are several links that are considered in all the

evacuation mode splits. Figure 6f shows the average mortality rate increase for each link

over all the 5 different evacuation mode splits. In this study, links whose failure causes an

increase in mortality rate over 5% are considered as critical, and further assessment has

been done on these identified links. The other links are expected to have minimal criticality

and do not affect mortality rate dramatically upon failure as multiple alternative routes

exist. In the next section, these critical links are mapped to the transportation network of
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Seaside to find the topographically and structurally vulnerable ones to devise a plan for

retrofitting.

4.1.2 Critical links visualization

Figure 8 shows the visualization of the identified critical links in the transportation net-

work of this study for different evacuation mode choice combinations. Surprisingly, not all

bridges have large impacts on mortality rates. It can be explained by the potential avail-

ability to alternative routes in case of failure. For high percentages of cars, as shown in

Fig. 7a, b four main bridges and the roads leading to highly demanded shelters are marked

as critical. This is mostly due to the fact that failure of either of these links causes a severe

congestion to adjacent links, leading to higher travel times and thus higher fatality rates. As

the percentage of vehicles decrease, the links which are adjacent to shelters are no longer

marked as critical. Although with the failure of those links, the evacuees are forced to

choose another available shelter, the concentration of pedestrians does not have an impact

on travel times as it does on vehicles. Therefore, as shown in Fig. 7d which represents the

critical links for the evacuation scenario with 75% pedestrians and 25% cars, the critical

links are narrowed down to three main bridges and one arterial. The failure of this arterial

will cause an isolation to the top left part of the transportation network. For the scenario

where all the evacuees decide to evacuate on foot, as in Fig. 7e, the bottom left road and its

Fig. 6 Normalized mortalities associated with each link’s failure. Y-axis shows the increase in mortality
rate associated with failure of each link, compared to the average mortality rate for each specific evacuation
mode split. Therefore, the peaks on this set of graphs redirect to the links whose failure poses massive
impact on mortality rate and evacuation efficiency. It can be seen that the collection of critical links varies
for different evacuation mode splits. Figure 7 visualizes the critical links for each case
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adjacent bridge is added to critical links. These links become critical because their failure

leads to a sizable increase in distance to the safe zone for the agents in the lower sections of

the beach. Figure 7f illustrates the critical links identified based on the average mortality

increase over all the different mode splits.

In total, there are 13 critical links identified in the whole transportation network of

Seaside, OR. However, not all of these links have equal impacts on mortality rate in an

evacuation. Moreover, running retrofitting planning algorithm on 13 critical links is

computationally expensive. Therefore, we have to narrow down the important links to the

ones that are either known as being vulnerable or are expected to be influential on fatality

rate with higher certainty. Since the four links on the far east side of the city, adjacent to

the evacuation shelters, are located outside of the inundation zone, retrofitting them does

not seem to be of high priority. In addition, retrofitting arterials, compared to the bridges, is

not of great significance since they are expected to be partially functional even facing

extreme earthquakes. Furthermore, even though they are closed for vehicles, they probably

can still carry pedestrians. One exception, however, is the bottom left road which is highly

prone to a landslide after an extreme earthquake. With all this in mind, and accounting for

Fig. 7 Color coded network, representing critical links. a–f show the variation of identified critical links
with the evacuation mode choice split, corresponding to Fig. 6. a, b reflect the scenarios with high
percentages of cars. In these cases, bottom left link that acts as an outlet for the evacuees on the south part of
the beach proves to be influential. With the increase in percentage of pedestrians to 50 (c) and 75 (d),
moving toward optimal mode choice split, despite emergence of a new set of links that are considered
critical only for high percentages of pedestrians, the number of critical links collectively decreases. Moving
on to fully on-foot evacuation (e), interestingly the number of critical links increases. (f) shows that the links
that are collectively combining all 5 different mode split cases are considered as critical. a 0% Pedestrain–
100% cars, b 25% pedestrain–75% cars, c 50% pedestrain–50% cars, d 75% pedestrain–25% cars, e 100%
pedestrain–0% cars, f average
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the insights of the structural engineers regarding the stability and vulnerability of the

bridges and other links, there are five links identified for retrofitting purposes, shown in

Fig. 8. Further assessment of the degree to which a link is damaged in order to propose an

optimal retrofitting plan is provided.

4.2 Retrofitting analysis

In this section, we assess the damage to each of the previously determined critical links.

Functionality states to which any transportation facility operates is categorized as follows:

(1) able to accommodate both vehicles and pedestrians, INTACT, (2) able to accommodate

only pedestrians, PED, and (3) not able to accommodate any kind of traffic, FAILED.

The goal is to prepare a retrofitting plan considering limited resources on the critical

links to minimize mortality rates. In order to formulate the problem, a few assumptions

have been made regarding the details of the retrofitting. First, if a bridge is not retrofitted, it

fails as a consequence of an earthquake. Second, one level retrofitting costs one unit of

resources and makes a bridge remain functional for pedestrians after an earthquake. Third,

another level of retrofitting costs another RATIO number of resources and makes a bridge

remain intact after the earthquake, meaning that it will be functional for both pedestrians

and vehicles. Therefore, fully retrofitting a bridge costs RATIOþ 1 number of resources.

Considering the states mentioned, and for different values of RATIO and splits of

evacuation mode, retrofitting planning is represented in Fig. 9a, b. Besides a detailed

retrofitting plan for all the cases, the objective is to find general rules for retrofitting which

can be applied to different evacuation cases with different splits and different retrofitting

plans with different RATIOs. As expected, there are numerous ways to spend the few units

of resources to retrofit the system. The aim is to minimize the mortality with respect to

constraints on alternatives to spending those amounts of resources. The following section

explains a constraint satisfaction problem that clears the limits and alternatives of spending

a specific amount of resources.

Fig. 8 Final critical links. This
subset of critical links has been
chosen based on the collective
impact that they expose on
mortality rate of the evacuation
in different scenarios with
various evacuation mode split, as
well as structural stability and
vulnerability. A, B, C, and D are
bridges that do not have close
rerouting alternative in case of
failure. E is an outlet to one of
the important shelters which is
prone to landslides in case of
earthquake
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4.2.1 Constraint satisfaction formulation

These alternatives can be formulated as a constraint satisfaction problem (CSP):

N � 1þM � ðRatioþ 1Þ ¼ R ð3Þ

N þM�Ncr ð4Þ

N;M 2 N ð5Þ

where N is the number of retrofitted links to be pedestrian accessible (PED), M is the

number of retrofitted links to be intact (INTACT), R is the number of resources available,

and Ncr is the number of critical links which in this case equals to 5 links. The above

integer equation can either have no integer answers for N and M or have multiple sets of

answers for N and M. After solving the above equation, the number of alternatives

(Nalternatives) to spend R number of resources on M þ N bridges can be calculated as

following:

Nalternatives ¼
X
M;N

Ncr

M þ N

� �
M þ N

M

� �
ð6Þ

As shown in the figures, the blue dots represent mean mortality rates associated with the

various resource consumption alternatives from retrofitting. For example, if we assume the

RATIO ¼ 2, and we have R ¼ 6 number of resources, considering city of Seaside, with

Ncr ¼ 5 identified critical links, the solutions to Eq. 3 would be the following: (1) N ¼ 0

and M ¼ 2, retrofitting two bridges to the highest extent (INTACT); and (2) N ¼ 3 and

M ¼ 1, retrofitting one of the bridges to the highest extent (INTACT) and two of the others

to be pedestrian accessible (PED). In light of Eq. 6, the number of different alternatives for

spending 6 units of resources with the above combination on 5 critical links can be

calculated in the following way.

Fig. 9 Retrofitting resources planning—single mode evacuation. Each blue dot corresponds to mortality
rate associated with a specific expenditure alternative. The alternative that leads to the lowest mortality rate
is the best option for expenditure, and it is represented by the green line. On the other hand, the red line
represents the upper bound of spending specific amount resources. a associates with the case that all the
evacuees evacuate by car. Therefore, retrofitting a link to remain pedestrian accessible has no impact on the
mortality rate, and thus, mortality rate constantly decreases with the increase in number of resources. On the
other hand, b reflects retrofitting scheme for fully on-foot evacuation. Analogously in this case, there is no
benefit in retrofitting to the state that the link stays intact after the earthquake. Thus, mortality rate drops at
the beginning as the number of resources increases and then stays constant after the point that all the links
are retrofitted to PED state. a 100% car, b 100% pedestrian
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Nalternatives ¼
5

2

� �
2

2

� �
þ

5

4

� �
4

1

� �
¼ 10þ 20 ¼ 30

As Fig. 9 shows, 30 blue dots for R ¼ 6 are plotted which represent the mortality rates

associated with 30 different alternatives of spending 6 units of resources.

4.2.2 Retrofitting scheme

Figures 9 and 10 represent the expected mortality rate associated with different alternatives

of spending different amount of resources, respectively, for single mode and multimodal

evacuation scenarios. As stated in the objective, for each specific amount of resources, the

alternative that leads to the lowest mortality rate is the best option and it is represented by

the green line in the figures. Moreover, the red line represents the upper bound of spending

specific resources. In other words, it bounds the worst option of spending a specific amount

of resources which results in the highest mortality rate. As before, to capture the

stochasticity of the system, each scenario has been simulated multiple times and mean

mortality rates were used for assessment. The slopes of green lines between resource units

represent the value of the retrofitting in terms of decreasing mortality rates. In other words,

this can be translated into a cost–benefit problem in which one considers the cost of

retrofitting and consuming resources against the benefit of decreasing the number of

fatalities.

Retrofitting, in rare cases, can surprisingly increase the mortality rate. This phenomenon

happens mostly due to opening a new route to cars that may result in concentrations of

vehicles. In these cases, road closure (e.g., network disruption) will result in dissipation of

traffic that leads to lower densities and thus lower travel times. However, the availability of

a major route for vehicles might encourage a rebound effect in which additional people

decide to use the link, which in turn causes severe congestion and higher travel times.

4.2.2.1 Single mode evacuation Figure 9a shows the retrofitting benefits for the case that

none of the evacuees walk and all the population drive to safe zones. In this case, we see

that parameter RATIO has no impact on the details of retrofitting plans since there are no

pedestrians using the network, and thus, retrofitting a bridge to stay pedestrian accessible

Fig. 10 Retrofitting resources planning—multimodal evacuation. This figure shows the benefits gained on
decrease in mortality rate through retrofitting for different multimodal evacuation scenarios, assuming
RATIO ¼ 1. As expected, comparing Figs. 9 to 10, it can be stated that Fig. 10 covers the spectrum in
between 9a and 9b. For high percentages of cars (a), the mortality rate almost constantly decreases with the
increase in retrofitting. As the percentages of pedestrians increase (b, c), higher marginal decrease at the
beginning of the graph appears. a 25% Pedestrain–75% car, b 50% Pedestrain–50% car, c 75% Pedestrain–
25% car
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has no impact on the mortality rate. It can also be seen that retrofitting the first bridge to

remain INTACT has the most value and the highest decrease in the mortality rate (13%

drop from � 78% to � 65%). Table 2 clarifies the priority of critical links to be retrofitted

with the corresponding resultant mortality rate. Looking at the mortality rate column in

Table 2, improvement in the mortality rate at each level of retrofitting, compared to the

baseline, can be interpreted and mapped to the green lines in Fig. 9.

Figure 9b shows the benefit of retrofitting links in the case that all the evacuees

evacuate on foot. Therefore, there would be no benefit in retrofitting a link to remain

INTACT since there are no cars using the network. This explains the green curve in the

figures to decrease in the beginning and stays the same as the bridges are upgraded to

remain INTACT. Like the other single mode evacuation case, retrofitting the first bridge

has the most value and decreases the mortality rate by 65%. Regarding the impact of

RATIO parameter, it does not impact the general trend of the cost–benefit analysis;

however, it affects the details of the retrofitting priorities. Table 2 shows the priority of

critical links to be retrofitted.

From Table 2, the first link that should be retrofitted, for the case with 100% cars, is

Link E which helps to evacuate all the cars that are on the west side of the city and the

beach area to the bottom left evacuation shelters. Retrofitting bridge C by itself does not

have a significant impact on the mortality rate for cars since it does not provide enough

capacity for all the evacuees who are located on the beach to evacuate to the east side

shelters. On the other hand, in the case of evacuation on foot, retrofitting bridge C has the

higher impact and helps people move to safe zones quicker. The rest of the retrofitting

priorities for these two cases can be interpreted by the table.

4.2.2.2 Multimodal evacuation Figure 10 shows the decrease in expected mortality rate

when the evacuation is multimodal, assuming RATIO ¼ 1. Analogously, it can be inter-

preted as described in single mode evacuation.

Table 3 presents the retrofitting plan’s details for multimodal evacuation with retro-

fitting RATIO ¼ 1. For example, if the retrofitting RATIO is equal to 1 and the amount of

Table 2 Retrofitting plan details—single mode evacuation

Number of
retrofitted links

Pedestrian
(%)

Critical link Mortality
rate (%)

A B C D E

0 (Baseline) 0 FAILED FAILED FAILED FAILED FAILED 77.61

100 FAILED FAILED FILED FAILED FAILED 85.23

1 0 FAILED FAILED FAILED FAILED INTACT 64.63

100 FAILED FAILED PED FAILED FAILED 21.33

2 0 FAILED FAILED INTACT INTACT FAILED 59.96

100 FAILED FAILED PED FAILED PED 15.93

3 0 FAILED FAILED INTACT INTACT INTACT 52.74

100 FAILED FAILED PED PED PED 14.57

4 0 FAILED INTACT INTACT INTACT INTACT 48.39

100 PED PED PED FAILED PED 8.24

5 0 INTACT INTACT INTACT INTACT INTACT 41.41

100 PED PED PED PED PED 7.33
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available resources is 5, we can see that the optimal retrofitting option is the following: (1)

25% pedestrian–75% cars: Bridges C and D should be intact (INTACT), and link E should

be pedestrian accessible (PED); (2) 50% pedestrian–50% cars: Bridges B and D should be

intact (INTACT), and bridge C should be pedestrian accessible (PED); and (3) 75%

pedestrian–25% cars: Bridges A, B, and C should be pedestrian accessible (PED), and link

E should be intact (INTACT). This is mostly because as the percentage of the pedestrians

increases, having INTACT bridges loses its importance. Therefore, the rational decision

would be to distribute the resources in a way to have more pedestrian accessible links and

Table 3 Retrofitting plan details—multimodal evacuation—RATIO ¼ 1

Number of
resources

Pedestrian
(%)

Critical link Mortality rate
(%)

A B C D E

0 (Baseline) 25 FAILED FAILED FAILED FAILED FAILED 76.54

50 FAILED FAILED FAILED FAILED FAILED 75.12

75 FAILED FAILED FAILED FAILED FAILED 73.11

1 25 FAILED FAILED PED FAILED FAILED 60.76

50 FAILED FAILED PED FAILED FAILED 42.70

75 FAILED FAILED PED FAILED FAILED 26.86

2 25 FAILED FAILED INTACT FAILED FAILED 54.90

50 FAILED FAILED INTACT FAILED FAILED 38.46

75 FAILED FAILED PED FAILED PED 20.22

3 25 FAILED FAILED PED FAILED INTACT 46.26

50 FAILED FAILED PED FAILED INTACT 29.97

75 FAILED FAILED PED FAILED INTACT 16.71

4 25 FAILED FAILED INTACT INTACT FAILED 42.55

50 FAILED FAILED INTACT INTACT FAILED 26.37

75 FAILED PED PED FAILED INTACT 15.09

5 25 FAILED FAILED INTACT INTACT PED 41.99

50 FAILED INTACT PED INTACT FAILED 24.37

75 PED PED PED FAILED INTACT 10.89

6 25 FAILED FAILED INTACT INTACT INTACT 36.84

50 PED INTACT PED INTACT FAILED 22.00

75 PED INTACT PED INTACT FAILED 8.62

7 25 FAILED INTACT PED INTACT INTACT 35.66

50 PED INTACT PED INTACT PED 18.62

75 PED INTACT PED INTACT PED 7.04

8 25 INTACT INTACT INTACT INTACT FAILED 28.46

50 INTACT INTACT INTACT INTACT FAILED 13.00

75 INTACT INTACT PED INTACT PED 6.02

9 25 INTACT INTACT INTACT INTACT PED 27.77

50 INTACT INTACT INTACT INTACT PED 10.55

75 INTACT INTACT INTACT INTACT PED 5.24

10 25 INTACT INTACT INTACT INTACT INTACT 24.95

50 INTACT INTACT INTACT INTACT INTACT 11.12

75 INTACT INTACT INTACT INTACT INTACT 6.19
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bridges. From Table 3, it is obvious bridge C is the first one that should be retrofitted for

most of the cases, followed by link E, bridge B, and bridge D. Among these 5 critical links,

bridge A is the least likely to be retrofitted in most of the cases. Other RATIOs will result in

fairly the same conclusion, but slightly different link prioritizations (Mostafizi 2016).

5 Discussion of implications for community planning

In this work, we created an agent-based modeling framework to systematically characterize

the critical links of the transportation network as a result of an unplanned network dis-

ruption due to a CSZ/tsunami event. Results indicate that network failure severely impacts

the mortality rate of the scenario and the efficiency of the evacuation. The criticality of a

link is measured by the contribution of a particular link’s failure to the overall mortality

rate of the scenario. A set of critical links have been identified after a systematic char-

acterization of each link’s contribution to the overall mortality rate for different evacuation

mode splits between driving and walking on foot. Each link’ contribution is measured by

the mortality rate when a specific link fails, while the rest of the links are intact in the

scenario. The link importance defined in this context is relative in nature. The relative

importance could be governed by the joint impacts from multiple different factors/pa-

rameters (i.e., mode split, walking or driving speeds, the existence of vertical evacuation

structures). One link can be highly influential when one of the evacuation modes has the

majority, but not when the other mode rules. After that, a mutual set of critical links of all

the evacuation mode splits, informed by engineering judgment and structural criticality and

vulnerability of the link, has been chosen for further retrofitting assessment.

The modeling framework has been applied to the city of Seaside, OR, as a case study.

The results identified four bridges and one link as being the most critical—whose failure

increases the mortality rates by great amounts. Then, a retrofitting plan has been created to

minimize the number of fatalities considering the limited amount of retrofitting resources.

The analysis incorporated the different levels of retrofitting (i.e., pedestrian accessible and

intact). The results of the assessment of the city of Seaside transportation network have

shown that neither all the bridges failures impact the mortality rate, nor all the critical links

are the bridges. This research also captures the marginal mortality rate with the change in

number of resources available to provide a baseline to assess further cost–benefit analyses.

Furthermore, for the case of the city of Seaside, retrofitting schemes have shown that in

most of the cases, bridge C should have the highest priority to be retrofitted, and after that,

depending on the mode choice split, link E, bridge D, or bridge B are the next critical links,

respectively.

6 Conclusion and future remarks

6.1 Summary of contributions and findings

The overall contribution of this study is the novel agent-based tsunami evacuation mod-

eling framework which allows accurate modeling of unplanned network disruptions on the

critical links in a transportation network. The characterization of each link’s impor-

tance/contribution facilitates the creation of evidence-driven retrofitting strategies and

resource allocation decision making to increase the overall network resilience through
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informed and targeted proactive protection to those critical links. The major findings of this

research are:

1. The agent-based modeling and simulation framework are uniquely situated to identify

and characterize the criticality of each link through an iterative Monte Carlo approach.

2. The links in a transportation network are not equally significant in terms of each

individual’s contribution to the overall life safety outcomes measured by mortality

rate. There exist links whose criticality to life safety is counterintuitive.

3. Diverse ways of spending the limited retrofitting resources can generate dramatically

different life safety outcomes.

4. Accurate characterization and modeling of the unplanned network disruptions will

facilitate the creation of evidence-driven retrofitting planning strategies and inform

resource allocations that enhance network resilience.

These findings emphasize the importance of proactive evidence-driven retrofitting planning

and informed resource allocation to enhance the network resilience especially considering

that retrofitting resources are often inadequate. The agent-based tsunami evacuation

modeling framework, as an integrated and interdisciplinary approach, is uniquely situated

to merge transportation engineering, social science, and hazard science to address prob-

lems in a multi-hazard context (i.e., earthquake and tsunami). The results of our models

provide baseline data that allows for future unplanned network disruption modeling

research, as well as useful tools for local emergency planners and managers to identify

social and infrastructure parameters unique to their locations and enhance community

resiliency to a CSZ earthquake and near-field tsunami.

6.2 Future remarks

The presence of vertical evacuation shelters can dramatically change the criticality of a

link. As an alternative, investing resources in building highly resistant shelter structures

inside the inundation zone might be more economical than spending greater amounts of

resources on retrofitting bridges or transportation links. Therefore, future work needs to

incorporate the impact of having vertical evacuation shelters on vulnerability and criticality

of the transportation network. Additionally, the creation of population distributions at

different times of day (day of week), the number of tourists, and their combined effect on

link criticality are beyond the scope of this study but will be assessed as a logical next step.

In addition, social aspects of the evacuation scenario necessitate more extensive investi-

gation. Population characteristics, coalescing behavior, car-abandoning (evacuation mode

transfer) and communications (information provision and propagation strategies), and

alternative daytime or nighttime contexts need to be considered in the future evacuation

scenarios. Moreover, very likely, earthquake-induced damages could reduce the usability

or capacity of facilities, but not necessarily to the extent to completely eliminate the use of

a certain mode of transportation. Thus, capacity drop, as a consequence of earthquake

damage to the transportation network, could serve as an alternative metric for network

assessment. In addition, realistic interaction rules among agents (i.e., pedestrian and car

interaction) to provide more accurate representation of the multimodal evacuation should

be taken into consideration.
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